论文标题
基于零拍的图像检索的堆叠的对抗网络
Stacked Adversarial Network for Zero-Shot Sketch based Image Retrieval
论文作者
论文摘要
基于草图的图像检索(SBIR)的常规方法假设所有类的数据在培训过程中可用。假设可能并不总是实用的,因为几个类的数据可能不可用,或者在培训时可能不会出现课程。基于零拍的草图图像检索(ZS-Sbir)放松了此约束,并允许算法在测试过程中处理以前看不见的类。本文提出了一种基于堆叠的对抗网络(SAN)的生成方法,以及对ZS-SBIR的暹罗网络(SN)的优势。 SAN生成高质量的样本时,SN与最近的邻居搜索相比,学习了一个更好的距离度量。生成模型基于草图合成图像特征的能力将SBIR问题降低到图像到图像检索问题的问题。我们评估了我们在Tu-Berlin上提出的方法的功效,以及标准ZSL和广义ZSL设置中的粗略数据库。所提出的方法可以显着改善标准ZSL以及SBIR的更具挑战性的广义ZSL设置(GZSL)。
Conventional approaches to Sketch-Based Image Retrieval (SBIR) assume that the data of all the classes are available during training. The assumption may not always be practical since the data of a few classes may be unavailable, or the classes may not appear at the time of training. Zero-Shot Sketch-Based Image Retrieval (ZS-SBIR) relaxes this constraint and allows the algorithm to handle previously unseen classes during the test. This paper proposes a generative approach based on the Stacked Adversarial Network (SAN) and the advantage of Siamese Network (SN) for ZS-SBIR. While SAN generates a high-quality sample, SN learns a better distance metric compared to that of the nearest neighbor search. The capability of the generative model to synthesize image features based on the sketch reduces the SBIR problem to that of an image-to-image retrieval problem. We evaluate the efficacy of our proposed approach on TU-Berlin, and Sketchy database in both standard ZSL and generalized ZSL setting. The proposed method yields a significant improvement in standard ZSL as well as in a more challenging generalized ZSL setting (GZSL) for SBIR.