论文标题
$ a $ a $ a $ auslander代数的张量产品的组合制品
The combinatorics of tensor products of higher Auslander algebras of type $A$
论文作者
论文摘要
我们认为最大的非$ L $ - 交织收藏集,这是最大的非交叉集合的高维版本,该集合为Scott所描述的是Grassmannian坐标环的Plücker坐标簇。我们扩展了一种用于生产此类收藏品的方法,该方法与$ a $ a $ auslander代数的张量产品有关。我们表明,两个$ d $ -presentation-Finite代数的张量产物的较高的预定量代数具有$ d $ - 预倾斜的倾斜子类别。最后,我们将这些集合的突变与这些代数的倾斜形式联系起来。
We consider maximal non-$l$-intertwining collections, which are a higher-dimensional version of the maximal non-crossing collections which give clusters of Plücker coordinates in the Grassmannian coordinate ring, as described by Scott. We extend a method of Scott for producing such collections, which are related to tensor products of higher Auslander algebras of type $A$. We show that a higher preprojective algebra of the tensor product of two $d$-representation-finite algebras has a $d$-precluster-tilting subcategory. Finally we relate mutations of these collections to a form of tilting for these algebras.