论文标题

深层协作嵌入信息级联预测

Deep Collaborative Embedding for information cascade prediction

论文作者

Zhao, Yuhui, Yang, Ning, Lin, Tao, Yu, Philip S.

论文摘要

最近,信息级联预测引起了研究人员的兴趣越来越大,但由于现有作品的三个缺陷,这并没有得到很好的解决。首先,现有作品通常假设潜在的信息扩散模型,由于信息扩散的复杂性,在现实世界中,该模型在现实世界中是不切实际的。其次,现有作品通常忽略了感染顺序的预测,这在社交网络分析中也起着重要作用。最后,现有的作品通常取决于基本扩散网络的要求,而扩散网络在实践中可能无法观察到。在本文中,我们旨在预测节点感染和感染顺序,而无需了解基本扩散机制和扩散网络的知识,而挑战是两个方面的。第一个是应捕获节点的级联特征以及如何捕获它们,第二是如何在信息级联中的节点的非线性特征建模。为了应对这些挑战,我们提出了一个用于信息级联预测的新型模型,称为“深度协作嵌入”(DCE),该模型不仅可以捕获节点结构属性,还可以捕获两种节点级联特征。我们提出了一个基于自动编码器的协作嵌入框架,以通过Cascade Collaboration和Node协作学习节点嵌入,以这种方式可以有效地捕获信息级联的非线性。在现实世界数据集上进行的广泛实验的结果验证了我们方法的有效性。

Recently, information cascade prediction has attracted increasing interest from researchers, but it is far from being well solved partly due to the three defects of the existing works. First, the existing works often assume an underlying information diffusion model, which is impractical in real world due to the complexity of information diffusion. Second, the existing works often ignore the prediction of the infection order, which also plays an important role in social network analysis. At last, the existing works often depend on the requirement of underlying diffusion networks which are likely unobservable in practice. In this paper, we aim at the prediction of both node infection and infection order without requirement of the knowledge about the underlying diffusion mechanism and the diffusion network, where the challenges are two-fold. The first is what cascading characteristics of nodes should be captured and how to capture them, and the second is that how to model the non-linear features of nodes in information cascades. To address these challenges, we propose a novel model called Deep Collaborative Embedding (DCE) for information cascade prediction, which can capture not only the node structural property but also two kinds of node cascading characteristics. We propose an auto-encoder based collaborative embedding framework to learn the node embeddings with cascade collaboration and node collaboration, in which way the non-linearity of information cascades can be effectively captured. The results of extensive experiments conducted on real-world datasets verify the effectiveness of our approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源