论文标题
平坦和希普利的代数定理
Flatness and Shipley's algebraicization theorem
论文作者
论文摘要
我们提供了Shipley的代数化定理的增强,该定理在交换代数的背景下表现更好。这涉及定义像Shipley和Pavlov-Scholbach一样定义平面模型结构,并表明在此精制上下文中,函子仍然提供Quillen等价。扁平模型结构的使用使人们可以识别组变化的代数对应物,如作者即将进行的工作所示。
We provide an enhancement of Shipley's algebraicization theorem which behaves better in the context of commutative algebras. This involves defining flat model structures as in Shipley and Pavlov-Scholbach, and showing that the functors still provide Quillen equivalences in this refined context. The use of flat model structures allows one to identify the algebraic counterparts of change of groups functors, as demonstrated in forthcoming work of the author.