论文标题
径向对称扩展的可压缩欧拉方程波的奇异性形成
Singularity formation for radially symmetric expanding wave of Compressible Euler Equations
论文作者
论文摘要
在本文中,对于多个空间维度的可压缩欧拉方程,我们通过跟踪径向对称扩展波的传播(包括压缩)的传播,证明了具有大量初始数据的经典解决方案的分解。奇异性形成对应于有限的时间冲击形成。我们还为经典解决方案提供了一些有关速度和密度功能的全球SUP-NORM估算。本文中的结果对解决方案的大小没有限制,因此是很大的数据结果。
In this paper, for compressible Euler equations in multiple space dimensions, we prove the break-down of classical solutions with a large class of initial data by tracking the propagation of radially symmetric expanding wave including compression. The singularity formation is corresponding to the finite time shock formation. We also provide some new global sup-norm estimates on velocity and density functions for classical solutions. The results in this paper have no restriction on the size of solutions, hence are large data results.