论文标题

用于化学疗法预约计划的随机编程方法

A Stochastic Programming Approach for Chemotherapy Appointment Scheduling

论文作者

Demir, Nur Banu, Gul, Serhat, Celik, Melih

论文摘要

由于预处理和输液持续时间的不确定性,化学疗法预约计划是一个具有挑战性的问题。在本文中,我们制定了一个两阶段的随机混合整数编程模型,用于在有限的可用性以及护士和输液椅的数量下进行化学疗法预约计划问题。目的是最大程度地减少预期的加班,椅子空闲时间和患者等待时间的加权总和。即使在确定性情况下,解决此问题的现实生活实例的计算负担也很高。为了克服这一负担,我们结合了有效的界限和对称性破坏约束。实施了渐进式套期保值算法,以启发改进的配方。我们通过惩罚更新方法,周期检测和可变固定机制以及目标函数的线性近似来增强算法。使用基于主要肿瘤医院的真实数据的数值实验,我们将解决方案方法与相关文献的几种调度启发式方法进行了比较,从而产生与护士和椅子对约会计划的影响有关的管理洞察,并估计定位解决方案的价值,以评估考虑不确定的意义。

Chemotherapy appointment scheduling is a challenging problem due to the uncertainty in pre-medication and infusion durations. In this paper, we formulate a two-stage stochastic mixed integer programming model for the chemotherapy appointment scheduling problem under limited availability and number of nurses and infusion chairs. The objective is to minimize the expected weighted sum of nurse overtime, chair idle time, and patient waiting time. The computational burden to solve real-life instances of this problem to optimality is significantly high, even in the deterministic case. To overcome this burden, we incorporate valid bounds and symmetry breaking constraints. Progressive hedging algorithm is implemented in order to solve the improved formulation heuristically. We enhance the algorithm through a penalty update method, cycle detection and variable fixing mechanisms, and a linear approximation of the objective function. Using numerical experiments based on real data from a major oncology hospital, we compare our solution approach with several scheduling heuristics from the relevant literature, generate managerial insights related to the impact of the number of nurses and chairs on appointment schedules, and estimate the value of stochastic solution to assess the significance of considering uncertainty.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源