论文标题

核医学数据的数学建模

Mathematical modelling of nuclear medicine data

论文作者

Piana, Michele, Caviglia, Giacomo, Sommariva, Sara

论文摘要

使用2- [18F] -2Deoxy-D-葡萄糖作为放射性激素(FDG-PET)的正电子发射断层扫描是当前是临床应用中最常用的功能成像方法之一。 FDG-PET数据的解释需要能够利用此类数据中包含的动态信息的复杂数学方法。这些方法中的大多数都是在隔室分析框架内提出的,该框架将实验性核数据与未知的示踪剂系数联系起来,通过凯奇(Cauchy)的普通微分方程系统来测量示踪剂代谢的有效性。本文提供了线性隔室方法的巧合概述,重点介绍了远期隔室问题的分析解决方案以及有关相应隔室反向问题的特定问题。

Positron Emission Tomography using 2-[18F]-2deoxy-D-glucose as radiotracer (FDG-PET) is currently one of the most frequently applied functional imaging methods in clinical applications. The interpretation of FDG-PET data requires sophisticated mathematical approaches able to exploit the dynamical information contained in this kind of data. Most of these approaches are formulated within the framework of compartmental analysis, which connects the experimental nuclear data with unknown tracer coefficients measuring the effectiveness of the tracer metabolism by means of Cauchy systems of ordinary differential equations. This paper provides a coincise overview of linear compartmental methods, focusing on the analytical solution of the forward compartmental problem and on the specific issues concerning the corresponding compartmental inverse problem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源