论文标题

在某些自符号分形和Weyl的特征值的laplacian:分析方面的调查

The Laplacian on some self-conformal fractals and Weyl's asymptotics for its eigenvalues: A survey of the analytic aspects

论文作者

Kajino, Naotaka

论文摘要

本文调查了作者最新研究的分析方面,该研究对某些克莱琳群体的“几何规范”的laplacian在圆圈包装上不变(即,在Riemann Sphere上的Möbius转换群体不变(即,Riemann Sphere of Sectractals)的分析方面。 $ \ wideHat {\ mathbb {c}} = \ mathbb {c} \ cup \ {\ infty \} $),包括经典的阿波罗尼亚垫圈和一些圆形的Sierpiński地毯。 Weyl的渐近学特征值的主要结果与Oh和Shah [Invent的形式。数学。 187(2012),1--35,定理1.4]关于圆的渐近分布,在一大批此类分形中。

This article surveys the analytic aspects of the author's recent studies on the construction and analysis of a "geometrically canonical" Laplacian on circle packing fractals invariant with respect to certain Kleinian groups (i.e., discrete groups of Möbius transformations on the Riemann sphere $\widehat{\mathbb{C}}=\mathbb{C}\cup\{\infty\}$), including the classical Apollonian gasket and some round Sierpiński carpets. The main result on Weyl's asymptotics for its eigenvalues is of the same form as that by Oh and Shah [Invent. Math. 187 (2012), 1--35, Theorem 1.4] on the asymptotic distribution of the circles in a very large class of such fractals.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源