论文标题
在各种扰动下,填充加工的狄拉克环及其演变
Filling-enforced Dirac loops and their evolutions under various perturbations
论文作者
论文摘要
基于对称分析,我们提出,非磁性系统中的填充强化的狄拉克环(FedLs)仅存在,仅存在于五个空间组(SG)中,即SG.57,SG.60,SG.61,SG.61,SG.62,SG.62和SG.205。 %, 分别。 我们在这些空间组中探索联邦快递的所有可能配置,并对它们进行相应的分类。此外,我们研究了在各种类型的对称性扰动(例如应用菌株或外部场)下,联盟的演变。结果表明,联邦快递材料可以用作托管节点/环和拓扑绝缘子/拓扑晶体绝缘体的拓扑半学的父材料。通过第一原理的计算,预测许多拥有联盟的材料。
Based on symmetry analysis, we propose that filling-enforced Dirac loops (FEDLs) in non-magnetic systems exist and only exist in only five space groups (SGs), namely, SG.57, SG.60, SG.61, SG.62 and SG.205. %, respectively. We explore all possible configurations of the FEDLs in these space groups, and classify them accordingly. Furthermore, we study the evolutions of the FEDLs under various types of symmetry-breaking perturbations, such as an applied strain or an external field. The results show that FEDL materials can serve as parent materials of both topological semimetals hosting nodal points/loops, and topological insulators/topological crystalline insulators. By means of first-principles calculations, many materials possessing FEDLs are predicted.