论文标题

评估人头内3D电流密度成像的超低场MRI的性能

Evaluating the Performance of Ultra-Low-Field MRI for In-vivo 3D Current Density Imaging of the Human Head

论文作者

Hömmen, Peter, Mäkinen, Antti J., Hunold, Alexander, Machts, René, Haueisen, Jens, Zevenhoven, Koos C. J., Ilmoniemi, Risto J., Körber, Rainer

论文摘要

可以通过零视野编码的超低场磁共振成像(ULF MRI)实现当前密度成像(CDI)以及可能的人体头部组织的电导率映射,通过零场编码的超低场磁共振成像(ULF MRI)进行非侵入性测量与组织中流动相关的磁场。由于应用于人类的电流受安全法规的限制,并且只有一小部分电流通过相对较高的颅骨,因此使用此方法时可能难以获得足够的信噪比(SNR)。在这项工作中,我们研究了零视场编码数据的图像SNR与现场重建的SNR之间的关系。我们通过模拟当前密度重建所需的序列来评估两种现有的ULF MRI扫描仪,一个超敏感的单渠道系统和一个全流多通道系统的结果。我们还根据基于三室模型的有限元元素模拟来得出现实的电流密度和磁场估计。我们发现,现有的ULF-MRI系统达到了足够的SNR,以检测统计不确定性低于10%的颅内电流分布。但是,他们还揭示了图像伪像会影响重建质量。此外,我们的模拟表明,头皮中的电流密度重建需要小于5 mm的分辨率,并证明可以通过多通道设备来实现必要的灵敏度覆盖率。

Magnetic fields associated with currents flowing in tissue can be measured non-invasively by means of zero-field-encoded ultra-low-field magnetic resonance imaging (ULF MRI) enabling current density imaging (CDI) and possibly conductivity mapping of human head tissues. Since currents applied to a human are limited by safety regulations and only a small fraction of the current passes through the relatively high-resistive skull, a sufficient signal-to-noise ratio (SNR) may be difficult to obtain when using this method. In this work, we study the relationship between the image SNR and the SNR of the field reconstructions from zero-field-encoded data. We evaluate these results for two existing ULF MRI scanners, one ultra-sensitive single-channel system and one whole-head multi-channel system, by simulating sequences necessary for current-density reconstruction. We also derive realistic current-density and magnetic-field estimates from finite-element-method simulations based on a three-compartment head model. We found that existing ULF-MRI systems reach sufficient SNR to detect intra-cranial current distributions with statistical uncertainty below 10%. However, they also reveal that image artifacts influence the reconstruction quality. Further, our simulations indicate that current-density reconstruction in the scalp requires a resolution less than 5 mm and demonstrate that the necessary sensitivity coverage can be accomplished by multi-channel devices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源