论文标题

重新审查有限核的结合能与无限核物质状态方程之间的关系

Reexamining the relation between the binding energy of finite nuclei and the equation of state of infinite nuclear matter

论文作者

Atkinson, M. C., Dickhoff, W. H., Piarulli, M., Rios, A., Wiringa, R. B.

论文摘要

能量密度是在$^{12} $ c,$^{40} $ ca,$^{48} $ CA和$^{208} $ pb的坐标空间中计算的,该分散光学模型受所有相关数据约束,包括基于地面状态的相应能量。还使用Argonne/Urbana的两种和三体相互作用的绿色功能蒙特卡洛方法来计算$^{8} $的能量密度。由于4 $πr^2 $相位空间因子,核内部最小化促进了总结合能。因此,体积对内部能量的贡献不太受约束。色散 - 光学模型的能量密度与\ textit {ab intio}自洽的格林的功能计算无限于仅处理短程和张量相关性。这些结果质疑核物质国家方程受经验质量公式的约束程度。特别是,本文的结果表明,饱和的核物质不需要每个粒子的规范值16 MeV结合,而仅考虑$^{208} $ pb的内部时,仅需大约13-14 meV。

The energy density is calculated in coordinate space for $^{12}$C, $^{40}$Ca, $^{48}$Ca, and $^{208}$Pb using a dispersive optical model constrained by all relevant data including the corresponding energy of the ground state. The energy density of $^{8}$Be is also calculated using the Green's function Monte-Carlo method employing the Argonne/Urbana two and three-body interactions. The nuclear interior minimally contributes to the total binding energy due to the 4$πr^2$ phase space factor. Thus, the volume contribution to the energy in the interior is not well constrained. The dispersive-optical-model energy densities are in good agreement with \textit{ab initio} self-consistent Green's function calculations of infinite nuclear matter restricted to treat only short-range and tensor correlations. These results call into question the degree to which the equation of state for nuclear matter is constrained by the empirical mass formula. In particular, the results in this paper indicate that saturated nuclear matter does not require the canonical value of 16 MeV binding per particle but only about 13-14 MeV when the interior of $^{208}$Pb is considered.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源