论文标题
预测与辅助场量子Carlo的3D配位配合物的配体分解能
Predicting Ligand-Dissociation Energies of 3d Coordination Complexes with Auxiliary-Field Quantum Monte Carlo
论文作者
论文摘要
过渡金属复合物在生物学和化学催化中无处不在,但是由于存在很大的动态电子相关性,它们仍然难以准确地用Ab Itibal方法进行准确描述,在某些情况下,它们是由低较低状态的多种状态产生的强静态相关性。高质量的气相实验数据的稀缺性阻碍了进步,而由于系统的尺寸较大,因此从头开始预测通常在计算上是无法承受的。在这项工作中,我们提供了一个具有34个3D金属络合物的数据集,其中具有气相配体分解能,这些络合物的不确定性为$ \ leq $ 2 kcal/mol。我们使用Blackbox程序选择的多确定试验波函数执行全电子无量辅助尺寸蒙特卡洛(pH-AFQMC)。我们将结果与DFT的结果与各种功能和DLPNO-CCSD(T)进行了比较。我们找到了1.09 $ \ pm $ 0.28 kcal/mol的MAE,用于我们的最佳pH-AFQMC方法,vs 2.89 kcal/mol用于DLPNO-CCSD(T)和1.57-3.87 kcal/mol用于DFT。我们发现最佳pH-AFQMC方法的最大误差为2.96 $ \ pm $ 1.71 kcal/mol,dlpno-ccsd(t)和5.98-13.69 kcal/mol vs vs 9.15 kcal/mol用于DFT。几种功能的合理性能与先前证明的硅藻学证明的较差的精度形成鲜明对比,这表明由于配体配位而导致电子相关性适度。但是,对于DFT和DLPNO-CCSD(t)的一小部分病例(t)留出令人担忧的原因,尤其是由于常见多报复指标的不可靠性,这是不可预测的很大的错误。相比之下,这些逼真的复合物的pH-AFQMC的鲁棒和可靠的pH-AFQMC结果将其确定为阐明含有过渡金属复合物的电子结构并预测其气相性能的有用工具。
Transition metal complexes are ubiquitous in biology and chemical catalysis, yet they remain difficult to accurately describe with ab initio methods due to the presence of a large degree of dynamic electron correlation, and, in some cases, strong static correlation which results from a manifold of low-lying states. Progress has been hindered by a scarcity of high quality gas-phase experimental data, while exact ab initio predictions are usually computationally unaffordable due to the large size of the systems. In this work, we present a data set of 34 3d metal-containing complexes with gas-phase ligand-dissociation energies that have reported uncertainties of $\leq$ 2 kcal/mol. We perform all-electron phaseless auxiliary-field quantum Monte Carlo (ph-AFQMC) utilizing multi-determinant trial wavefunctions selected by a blackbox procedure. We compare the results with those from DFT with various functionals, and DLPNO-CCSD(T). We find MAE of 1.09 $\pm$ 0.28 kcal/mol for our best ph-AFQMC method, vs 2.89 kcal/mol for DLPNO-CCSD(T) and 1.57 - 3.87 kcal/mol for DFT. We find maximum errors of 2.96 $\pm$ 1.71 kcal/mol for our best ph-AFQMC method, vs 9.15 kcal/mol for DLPNO-CCSD(T) and 5.98 - 13.69 kcal/mol for DFT. The reasonable performance of several functionals is in stark contrast to the much poorer accuracy previously demonstrated for diatomics, suggesting a moderation in electron correlation due to ligand coordination. However, the unpredictably large errors for a small subset of cases with both DFT and DLPNO-CCSD(T) leave cause for concern, especially due to the unreliability of common multi-reference indicators. In contrast, the robust and, in principle, systematically improvable results of ph-AFQMC for these realistic complexes establish it as a useful tool for elucidating the electronic structure of transition metal-containing complexes and predicting their gas-phase properties.