论文标题
开源能源系统使用收支平衡的成本为州级政策提供信息:北卡罗来纳州的案例研究
Open Source Energy System Modeling Using Break-Even Costs to Inform State-Level Policy: A North Carolina Case Study
论文作者
论文摘要
严格的基于模型的分析可以帮助为州级的能源和气候政策提供信息。在这项研究中,我们利用开源能源系统优化模型和公开可用的数据集来检查北卡罗莱纳州电力部门的未来发电,CO2排放和二氧化碳减排成本,直到2050年。模型场景包括未来的燃料价格不确定性,假设的CO2 CAP和扩展可再生可再生的可再生可再生电池组合标准。在模型的场景中,太阳能光伏代表了最具成本效益的低碳技术,而在碳限制的情景中进行了权衡很大程度上涉及天然气和可再生能源。我们还开发了一种计算收支平衡成本的新方法,该方法表明了不同技术在模型中具有成本效益的资本成本。在不同的技术和场景中观察到分支成本的显着差异。我们说明了如何使用收支平衡的成本来告知北卡罗来纳州扩展可再生投资组合标准的发展。利用收支平衡的成本来校准陆上风的税收抵免,我们发现由此产生的风力部署使其他可再生能源取代,因此对CO2排放的影响微不足道。这种见解可以为权衡不同政策选择的决策者提供关键的指导。这项研究提供了一个分析框架,可以使用开源模型和免费可用的数据集在其他州进行类似的分析。
Rigorous model-based analysis can help inform state-level energy and climate policy. In this study, we utilize an open-source energy system optimization model and publicly available datasets to examine future electricity generation, CO2 emissions, and CO2 abatement costs for the North Carolina electric power sector through 2050. Model scenarios include uncertainty in future fuel prices, a hypothetical CO2 cap, and an extended renewable portfolio standard. Across the modeled scenarios, solar photovoltaics represent the most cost-effective low-carbon technology, while trade-offs among carbon constrained scenarios largely involve natural gas and renewables. We also develop a new method to calculate break-even costs, which indicate the capital costs at which different technologies become cost-effective within the model. Significant variation in break-even costs are observed across different technologies and scenarios. We illustrate how break-even costs can be used to inform the development of an extended renewable portfolio standard in North Carolina. Utilizing the break-even costs to calibrate a tax credit for onshore wind, we find that the resultant wind deployment displaces other renewables, and thus has a negligible effect on CO2 emissions. Such insights can provide crucial guidance to policymakers weighing different policy options. This study provides an analytical framework to conduct similar analyses in other states using an open source model and freely available datasets.