论文标题
来自扩展环境的随机充气波动方程
Stochastic inflaton wave equation from an expanding environment
论文作者
论文摘要
我们在标量字段的环境中讨论了flat和弯曲的歧管上的cultaton $ ϕ $。我们平均在环境字段$χ_{N} $上。我们研究了超级Horizon $ k << ah $以及subhorizon $ k >> ah $模式$χ_{n}({\ bf k})$的贡献。结果,我们获得了带有摩擦和噪声的随机波方程。我们表明,在田间理论中的次级疗法中,由于与不同$ {\ bf k} $相对应的无限自由度,在$χ_{n}中对应于不同的$ {\ bf k} $({\ bf k})$。我们研究了慢速滚动和马尔可夫近似随机波方程。简要讨论了从随机爱因斯坦 - 克莱因 - 戈登方程中确定度量的确定,
We discuss the inflaton $ϕ$ in an environment of scalar fields $χ_{n}$ on flat and curved manifolds. We average over the environmental fields $χ_{n}$. We study a contribution of superhorizon $k<<aH$ as well as subhorizon $k>> aH$ modes $χ_{n}({\bf k})$. As a result we obtain a stochastic wave equation with a friction and noise. We show that in the subhorizon regime in field theory a finite number of fields is sufficient to produce a friction and diffusion owing to the infinite number of degrees of freedom corresponding to different ${\bf k}$ in $χ_{n}({\bf k})$. We investigate the slow roll and the Markovian approximaions to the stochastic wave equation. A determination of the metric from the stochastic Einstein-Klein-Gordon equations is briefly discussed,