论文标题

由大型正交单构的家庭产生的Galois群体

Galois groups arising from families with big orthogonal monodromy

论文作者

Zywina, David

论文摘要

我们研究了由大型正交单形成型的兼容家族引起的多项式的galois组。我们表明,鉴于功能方程和判别考虑对它们施加的约束,Galois组通常尽可能大。作为一个应用程序,我们考虑$ \ Mathbb {p} _ {\ Mathbb {f} _q} _q}^{2n+1} $至少$ 3 $的frobenius多项式群。我们还考虑了在功能字段上$ \ mathbb {f} _q(t)$上固定度曲线的固定度曲线的二次曲折的$ l $ functions。为了确定椭圆曲线设置中的典型Galois组,需要使用一些已知的桦木和Swinnerton-Dyer猜想。这扩展了Chavdarov,Katz和Jouve的工作。

We study the Galois groups of polynomials arising from a compatible family of representations with big orthogonal monodromy. We show that the Galois groups are usually as large as possible given the constraints imposed on them by a functional equation and discriminant considerations. As an application, we consider the Frobenius polynomials arising from the middle étale cohomology of hypersurfaces in $\mathbb{P}_{\mathbb{F}_q}^{2n+1}$ of degree at least $3$. We also consider the $L$-functions of quadratic twists of fixed degree of an elliptic curve over a function field $\mathbb{F}_q(t)$. To determine the typical Galois group in the elliptic curve setting requires using some known cases of the Birch and Swinnerton-Dyer conjecture. This extends and generalizes work of Chavdarov, Katz and Jouve.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源