论文标题

Lyceum:机器人学习的高效且可扩展的生态系统

Lyceum: An efficient and scalable ecosystem for robot learning

论文作者

Summers, Colin, Lowrey, Kendall, Rajeswaran, Aravind, Srinivasa, Siddhartha, Todorov, Emanuel

论文摘要

我们介绍了Lyceum,这是一种用于机器人学习的高性能计算生态系统。 Lyceum建立在朱莉娅编程语言和穆乔科物理模拟器之上,将高级编程语言的易用性与本机C的性能相结合,此外,Lyceum还具有直接的API,可以支持多个核心和机器的平行计算。总体而言,根据环境的复杂性,Lyceum的速度比Openai的健身房和DeepMind的DM-Control(例如Openai的健身房)快5-30倍。这大大减少了各种增强学习算法的训练时间;并且也足够快,可以通过Mujoco支持实时模型预测控制。代码,教程和演示视频可以在以下网址找到:www.lyceum.ml。

We introduce Lyceum, a high-performance computational ecosystem for robot learning. Lyceum is built on top of the Julia programming language and the MuJoCo physics simulator, combining the ease-of-use of a high-level programming language with the performance of native C. In addition, Lyceum has a straightforward API to support parallel computation across multiple cores and machines. Overall, depending on the complexity of the environment, Lyceum is 5-30x faster compared to other popular abstractions like OpenAI's Gym and DeepMind's dm-control. This substantially reduces training time for various reinforcement learning algorithms; and is also fast enough to support real-time model predictive control through MuJoCo. The code, tutorials, and demonstration videos can be found at: www.lyceum.ml.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源