论文标题
从飞机到角落:无组织的3D点云中的多用途原始检测
From Planes to Corners: Multi-Purpose Primitive Detection in Unorganized 3D Point Clouds
论文作者
论文摘要
我们提出了一种新方法,用于分割正交平面的无关节估计,它们的相交线,关系图和位于三个正交平面相交的相交处。这种统一的场景探索正交性允许多种应用,例如语义平面检测或局部和全局扫描对齐,这又可以帮助机器人定位或掌握任务。我们的两阶段管道涉及对正交平面的粗糙但联合估计,然后是随后尊重其正交关系的平面参数的关节改进。我们构成了这些原语的图,为提取进一步可靠的特征铺平了道路:线条和角落。我们的实验证明了从墙检测到6D跟踪的许多情况下,我们的方法的有效性,无论是在合成和真实数据上。
We propose a new method for segmentation-free joint estimation of orthogonal planes, their intersection lines, relationship graph and corners lying at the intersection of three orthogonal planes. Such unified scene exploration under orthogonality allows for multitudes of applications such as semantic plane detection or local and global scan alignment, which in turn can aid robot localization or grasping tasks. Our two-stage pipeline involves a rough yet joint estimation of orthogonal planes followed by a subsequent joint refinement of plane parameters respecting their orthogonality relations. We form a graph of these primitives, paving the way to the extraction of further reliable features: lines and corners. Our experiments demonstrate the validity of our approach in numerous scenarios from wall detection to 6D tracking, both on synthetic and real data.