论文标题
使用子伯格曼内核的单位光盘上的确定点过程的刚度
Rigidity of determinantal point processes on the unit disc with sub-Bergman kernels
论文作者
论文摘要
我们在单位光盘$ \ mathbb {d} $上提供了数量刚性确定点过程的自然结构,并带有表格的子贝格曼内核,\ [k_λ(z,w)= \ sum_ {n \inλ}(n+inλ)}(n+1)z^n \ bar {一组非负整数的无限子集。我们的构造既是确定性方法和概率方法的给出的。在确定性方法中,我们的证明涉及经典的Bloch函数。
We give natural constructions of number rigid determinantal point processes on the unit disc $\mathbb{D}$ with sub-Bergman kernels of the form \[ K_Λ(z, w) = \sum_{n\in Λ}(n+1) z^n \bar{w}^n, \quad z, w \in \mathbb{D}, \] with $Λ$ an infinite subset of the set of non-negative integers. Our constructions are given both in a deterministic method and a probabilisitc method. In the deterministic method, our proofs involve the classical Bloch functions.