论文标题

通过自动域选择在高维系统中进行策略搜索的贝叶斯优化

Bayesian Optimization for Policy Search in High-Dimensional Systems via Automatic Domain Selection

论文作者

Fröhlich, Lukas P., Klenske, Edgar D., Daniel, Christian G., Zeilinger, Melanie N.

论文摘要

贝叶斯优化(BO)是一种有效的方法,用于优化具有广泛应用程序的昂贵评估的黑框函数,例如机器人技术,系统设计和参数优化。但是,将BO扩展到具有较大输入维度的问题(> 10)仍然是一个开放的挑战。在本文中,我们建议利用从最佳控制到扩展BO到更高维控制任务的结果,并减少手动选择优化域的需求。本文的贡献是双重的:1)我们展示了如何与基于模型的控制器结合使用学习的动力学模型来简化BO问题,以通过关注优化域的最相关区域来简化BO问题。 2)基于(1)我们提出了一种在参数空间中找到嵌入的方法,以降低优化问题的有效维度。为了评估所提出方法的有效性,我们提出了对实际硬件的实验评估,以及模拟任务,包括四轮型四维政策。

Bayesian Optimization (BO) is an effective method for optimizing expensive-to-evaluate black-box functions with a wide range of applications for example in robotics, system design and parameter optimization. However, scaling BO to problems with large input dimensions (>10) remains an open challenge. In this paper, we propose to leverage results from optimal control to scale BO to higher dimensional control tasks and to reduce the need for manually selecting the optimization domain. The contributions of this paper are twofold: 1) We show how we can make use of a learned dynamics model in combination with a model-based controller to simplify the BO problem by focusing onto the most relevant regions of the optimization domain. 2) Based on (1) we present a method to find an embedding in parameter space that reduces the effective dimensionality of the optimization problem. To evaluate the effectiveness of the proposed approach, we present an experimental evaluation on real hardware, as well as simulated tasks including a 48-dimensional policy for a quadcopter.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源