论文标题

深度学习通过单个数据采集渠道启用了实时光声断层扫描系统

Deep Learning Enabled Real-Time Photoacoustic Tomography System via Single Data Acquisition Channel

论文作者

Lan, Hengrong, Jiang, Daohuai, Gao, Feng, Gao, Fei

论文摘要

光声计算机断层扫描(PACT)结合了光学成像的光学对比度和超声检查的渗透性。在这项工作中,我们开发了一种新的PACT系统来提供实时成像,这是通过仅使用单个数据采集(DAQ)通道的120元素超声阵列实现的。为了减少DAQ的通道数,我们将附近的30个通道的信号叠加在一起,并在模拟域中缩小到4个数据通道(120/30 = 4)。此外,在输入单渠道DAQ之前,设计了一个四对一的延迟线模块,将这四个通道的数据组合到一个通道中,然后在数据采集后解耦信号。为了重建来自四个叠加的30个通道信号的图像,我们训练一个专门的深度学习模型来重建最终的PA映像。在本文中,我们介绍了幻影和体内实验的初步结果,这些结果表现出了其强大的实时成像性能。这个新颖的协议系统的意义在于,它大大降低了多通道DAQ模块的成本(从120个通道到1通道),铺平了通往便携式,低成本和实时契约系统的方式。

Photoacoustic computed tomography (PACT) combines the optical contrast of optical imaging and the penetrability of sonography. In this work, we develop a novel PACT system to provide real-time imaging, which is achieved by a 120-elements ultrasound array only using a single data acquisition (DAQ) channel. To reduce the channel number of DAQ, we superimpose 30 nearby channels' signals together in the analog domain, and shrinking to 4 channels of data (120/30=4). Furthermore, a four-to-one delay-line module is designed to combine these four channels' data into one channel before entering the single-channel DAQ, followed by decoupling the signals after data acquisition. To reconstruct the image from four superimposed 30-channels'PA signals, we train a dedicated deep learning model to reconstruct the final PA image. In this paper, we present the preliminary results of phantom and in-vivo experiments, which manifests its robust real-time imaging performance. The significance of this novel PACT system is that it dramatically reduces the cost of multi-channel DAQ module (from 120 channels to 1 channel), paving the way to a portable, low-cost and real-time PACT system.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源