论文标题
与相互作用的驱动扩散模型中的动力过渡
Dynamical transitions in a driven diffusive model with interactions
论文作者
论文摘要
我们研究了使用对近似的不对称简单排除过程的动力学和局部相互作用的动力学,该近似将2节点群集平均磁场理论和马尔可夫链链方法进行了动力学方法,并与这些方法共享了重现散装电流密度关系和稳态相图的精确结果的特性。我们发现,弛豫速率表现出动态过渡,没有静态对应物,类似于没有相互作用的情况。值得注意的是,对于模型参数的某些值,我们在相同的低密度相中发现了2个动态转变。我们研究了这些过渡两侧的放松动力学到稳定状态,并尝试为这种现象提供物理解释。数值方法和修改域壁理论的结果证实了对近似所提供的图片。
We study the dynamics of an asymmetric simple exclusion process with open boundaries and local interactions using a pair approximation which generalizes the 2-node cluster mean field theory and the Markov chain approach to kinetics and shares with these approaches the property of reproducing exact results for the bulk current-density relation and the steady state phase diagrams. We find that the relaxation rate exhibits a dynamical transition, with no static counterpart, analogous to that found without interactions. Remarkably, for some values of the model's parameters, we find 2 dynamical transitions in the same low density phase. We study the dynamics of relaxation to the steady state on both sides of these transitions and make an attempt at providing a physical interpretation for this phenomenon. Results from numerical approaches and a modified Domain Wall Theory confirm the picture provided by the pair approximation.