论文标题

由银河力控制的分子气体中自我磨碎和恒星形成的模型:ii。通过云环境解耦,倒闭的瓶颈

A model for the onset of self-gravitation and star formation in molecular gas governed by galactic forces: II. the bottleneck to collapse set by cloud-environment decoupling

论文作者

Meidt, Sharon E., Glover, Simon C. O., Kruijssen, J. M. Diederik, Leroy, Adam K., Rosolowsky, Erik, Schruba, Andreas, Hughes, Annie, Schinnerer, Eva, Usero, Antonio, Bigiel, Frank, Blanc, Guillermo, Chevance, Melanie, Pety, Jerome, Querejeta, Miguel, Utomo, Dyas

论文摘要

在Meidt等人中。 (2018年),我们表明,在单个分子云的规模上的气体运动学不是由自我重度主导,而是跟踪以轨道运动为宿主星系潜力的轨道运动的成分。这与观察到的云线宽度一致,这些云线宽度显示出与环境有关的病毒运动的系统变化,指出了星系电位的影响。在本文中,我们假设这些动议起着减缓气体崩溃的作用,因此有助于调节恒星形成。扩展Meidt等人的结果。 (2018年),我们得出了一个动态塌陷时间尺度,仅在气体与银河电位完全解耦后仅接近自由下落的时间。使用此时间尺度,我们可以预测自由坠落,强烈自我磨碎的气体在整个星形星系的整个磁盘中如何变化。我们还使用此塌陷时间尺度来预测分子气星形成效率的变化,该效率从最大,反馈调节的水平降低了,在存在强耦合到银河电位的情况下。我们的模型暗示,气体只能使星系塌陷并有效地形成云层深处的恒星。我们表明,这自然解释了在银河系CMZ和其他星系中心观察到的每单位气体质量的恒星形成率下降。银河瓶颈的模型也与星系磁盘中的密集气体和恒星形成的分辨观测以及局部云的特性非常吻合。

In Meidt et al. (2018), we showed that gas kinematics on the scale of individual molecular clouds are not dominated by self-gravity but also track a component that originates with orbital motion in the potential of the host galaxy. This agrees with observed cloud line widths, which show systematic variations from virial motions with environment, pointing at the influence of the galaxy potential. In this paper, we hypothesize that these motions act to slow down the collapse of gas and so help regulate star formation. Extending the results of Meidt et al. (2018), we derive a dynamical collapse timescale that approaches the free-fall time only once the gas has fully decoupled from the galactic potential. Using this timescale we make predictions for how the fraction of free-falling, strongly self-gravitating gas varies throughout the disks of star-forming galaxies. We also use this collapse timescale to predict variations in the molecular gas star formation efficiency, which is lowered from a maximum, feedback-regulated level in the presence of strong coupling to the galactic potential. Our model implies that gas can only decouple from the galaxy to collapse and efficiently form stars deep within clouds. We show that this naturally explains the observed drop in star formation rate per unit gas mass in the Milky Way's CMZ and other galaxy centers. The model for a galactic bottleneck to star formation also agrees well with resolved observations of dense gas and star formation in galaxy disks and the properties of local clouds.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源