论文标题

$ O(n)$通用类中关键指数的精确计算与非扰动重新归一化组的精确计算

Precision calculation of critical exponents in the $O(N)$ universality classes with the nonperturbative renormalization group

论文作者

De Polsi, Gonzalo, Balog, Ivan, Tissier, Matthieu, Wschebor, Nicolás

论文摘要

我们通过实现非扰动重新归化组的派生范围扩展,直至近代到领导顺序[通常表示$ \ natercal {o}(O partial^4)$来计算各种值的关键指数$ν$,$η$和$ o(n)$型号的$ O(n)$模型。我们在连续的订单上分析了这种近似方案的行为,并观察到与小参数的明显收敛 - 通常在$ 1/9 $和$ 1/4 $之间,与Ising案例中的先前研究兼容。这使我们能够提供良好的错误栏。我们获得的确定临界指数的精度比大多数字段理论技术获得的精度相似或更好。在某些与身体相关的情况下,我们还比蒙特卡洛模拟达到了更好的精度。在$ o(2)$的情况下,蒙特卡洛估计值和针对特定热指数$α$的实验之间存在很长的争议,我们的结果与蒙特 - 卡洛的结果兼容,但显然排除了实验值。

We compute the critical exponents $ν$, $η$ and $ω$ of $O(N)$ models for various values of $N$ by implementing the derivative expansion of the nonperturbative renormalization group up to next-to-next-to-leading order [usually denoted $\mathcal{O}(\partial^4)$]. We analyze the behavior of this approximation scheme at successive orders and observe an apparent convergence with a small parameter -- typically between $1/9$ and $1/4$ -- compatible with previous studies in the Ising case. This allows us to give well-grounded error bars. We obtain a determination of critical exponents with a precision which is similar or better than those obtained by most field theoretical techniques. We also reach a better precision than Monte-Carlo simulations in some physically relevant situations. In the $O(2)$ case, where there is a longstanding controversy between Monte-Carlo estimates and experiments for the specific heat exponent $α$, our results are compatible with those of Monte-Carlo but clearly exclude experimental values.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源