论文标题
统一转化的因果和组成结构
Causal and compositional structure of unitary transformations
论文作者
论文摘要
统一转换的因果结构是任何输入子系统和任何输出子系统之间可能影响的关系集。我们研究是否可以从单一的组成结构来理解这种因果结构。给定一个量子电路,没有输入系统$ a $到输出系统$ b $的量子电路,系统$ a $无法影响系统$ b $。相反,给定一个单一$ u $,来自输入$ a $到输出$ b $的无影响关系,从[B。 Schumacher和M. D. Westmoreland,《量子信息处理》 4号。 1,(2005年2月)],存在$ u $的电路分解,没有$ a $ a $ to $ b $的路径。但是,正如我们认为的那样,有些单位不存在电路分解,从而使所有因果约束同时显而易见。为了解决这个问题,我们引入了一种新的“扩展电路图”的形式主义,该形式超出了量子电路表达的范围,其核心新功能是除顺序和张量产品组成之外,还可以代表直接总和结构。当时代表统一$ u $的因果忠实的扩展电路分解是从输入$ a $到输出$ b $的途径时,并且只有当时实际上只有$ a $ a $ a $ a $ a $ b $的影响。我们为大量的一级人群提供了因果忠实的扩展电路分解,在这种情况下,在每种情况下,统一的各自的因果结构暗示了分解。我们假设每个有限的统一转换都具有因果忠实的扩展电路分解。
The causal structure of a unitary transformation is the set of relations of possible influence between any input subsystem and any output subsystem. We study whether such causal structure can be understood in terms of compositional structure of the unitary. Given a quantum circuit with no path from input system $A$ to output system $B$, system $A$ cannot influence system $B$. Conversely, given a unitary $U$ with a no-influence relation from input $A$ to output $B$, it follows from [B. Schumacher and M. D. Westmoreland, Quantum Information Processing 4 no. 1, (Feb, 2005)] that there exists a circuit decomposition of $U$ with no path from $A$ to $B$. However, as we argue, there are unitaries for which there does not exist a circuit decomposition that makes all causal constraints evident simultaneously. To address this, we introduce a new formalism of `extended circuit diagrams', which goes beyond what is expressible with quantum circuits, with the core new feature being the ability to represent direct sum structures in addition to sequential and tensor product composition. A causally faithful extended circuit decomposition, representing a unitary $U$, is then one for which there is a path from an input $A$ to an output $B$ if and only if there actually is influence from $A$ to $B$ in $U$. We derive causally faithful extended circuit decompositions for a large class of unitaries, where in each case, the decomposition is implied by the unitary's respective causal structure. We hypothesize that every finite-dimensional unitary transformation has a causally faithful extended circuit decomposition.