论文标题

注意力!轻巧的2D手姿势估计方法

Attention! A Lightweight 2D Hand Pose Estimation Approach

论文作者

Santavas, Nicholas, Kansizoglou, Ioannis, Bampis, Loukas, Karakasis, Evangelos, Gasteratos, Antonios

论文摘要

基于视觉的人类姿势估计是一种用于人类互动(HCI)的非侵入性技术。直接将手用作输入设备提供了一种有吸引力的交互方法,不需要专门的传感设备,例如外骨骼,手套等,而是相机。传统上,HCI在各种应用程序中使用,在包括制造,手术,娱乐行业和建筑等领域传播。基于视觉的人类姿势估计算法的部署可以使这些应用呼吸创新。在这封信中,我们提出了一种新颖的卷积神经网络体系结构,并以一个自我发项的模块加强,该模块可以在嵌入式系统上部署,因为它的轻量级性质,只有190万个参数。源代码和定性结果公开可用。

Vision based human pose estimation is an non-invasive technology for Human-Computer Interaction (HCI). Direct use of the hand as an input device provides an attractive interaction method, with no need for specialized sensing equipment, such as exoskeletons, gloves etc, but a camera. Traditionally, HCI is employed in various applications spreading in areas including manufacturing, surgery, entertainment industry and architecture, to mention a few. Deployment of vision based human pose estimation algorithms can give a breath of innovation to these applications. In this letter, we present a novel Convolutional Neural Network architecture, reinforced with a Self-Attention module that it can be deployed on an embedded system, due to its lightweight nature, with just 1.9 Million parameters. The source code and qualitative results are publicly available.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源