论文标题
通过深度神经建筑搜索构建高精度模拟器,用于科学模拟
Building high accuracy emulators for scientific simulations with deep neural architecture search
论文作者
论文摘要
计算机模拟是科学发现的宝贵工具。但是,准确的模拟通常会缓慢执行,这将其适用性限制为广泛的参数探索,大规模数据分析和不确定性量化。通过使用机器学习构建快速模拟器来加速模拟的有前途的途径需要大型培训数据集,这对于通过缓慢的模拟而获得的昂贵。在这里,我们提出了一种基于神经体系结构搜索的方法,即使培训数据数量有限,也可以构建准确的模拟器。该方法在10个科学案例中成功加速了多达20亿次模拟,包括使用相同的超级构造,算法和超级参数,包括天体物理学,气候科学,生物地球化学,高能量密度物理学,融合能和地震学。我们的方法还固有地提供了模拟器不确定性估计,从而增加了对其使用的信心。我们预计这项工作将加速涉及昂贵模拟的研究,允许更广泛的参数探索,并启用新的,以前不可行的计算发现。
Computer simulations are invaluable tools for scientific discovery. However, accurate simulations are often slow to execute, which limits their applicability to extensive parameter exploration, large-scale data analysis, and uncertainty quantification. A promising route to accelerate simulations by building fast emulators with machine learning requires large training datasets, which can be prohibitively expensive to obtain with slow simulations. Here we present a method based on neural architecture search to build accurate emulators even with a limited number of training data. The method successfully accelerates simulations by up to 2 billion times in 10 scientific cases including astrophysics, climate science, biogeochemistry, high energy density physics, fusion energy, and seismology, using the same super-architecture, algorithm, and hyperparameters. Our approach also inherently provides emulator uncertainty estimation, adding further confidence in their use. We anticipate this work will accelerate research involving expensive simulations, allow more extensive parameters exploration, and enable new, previously unfeasible computational discovery.