论文标题
Green的非平衡功能的计算方法
Nonequilibrium Green's function's approach to the calculation of work statistics
论文作者
论文摘要
量子多体系统中工作分布的计算在非平衡量子统计力学领域具有重要的重要性,并且在难度也很大。为了解决这个问题,灵感来自Schwinger-keldysh形式主义,我们提出了工作统计的轮廓融合表述。基于此轮廓积分,我们展示了如何执行工作特征函数(CFW)的扰动扩展,并在扰动协议下为任意系统的工作参数的第二阶获得CFW的近似表达。我们还通过利用Kubo-Martin-Schinginger条件来证明波动定理的有效性。最后,我们在强制的谐波电位中使用非互操作的相同粒子来证明我们方法的强大性。
The calculation of work distributions in a quantum many-body system is of significant importance and also of formidable difficulty in the field of nonequilibrium quantum statistical mechanics. To solve this problem, inspired by Schwinger-Keldysh formalism, we propose the contour-integral formulation of the work statistics. Based on this contour integral, we show how to do the perturbation expansion of the characteristic function of work (CFW) and obtain the approximate expression of the CFW to the second order of the work parameter for an arbitrary system under a perturbative protocol. We also demonstrate the validity of fluctuation theorems by utilizing the Kubo-Martin-Schwinger condition. Finally, we use noninteracting identical particles in a forced harmonic potential as an example to demonstrate the powerfulness of our approach.