论文标题
$ \ frac {1} {2}(f_n-1)的表示(f_ {n+1} -1)$和$ \ frac {1} {1} {2} {2}(f_n-1)(f_ {n+2} -1)$
Representation of $\frac{1}{2}(F_n-1)(F_{n+1}-1)$ and $\frac{1}{2}(F_n-1)(F_{n+2}-1)$
论文作者
论文摘要
令$ a,b \ in \ mathbb {n} $相对典型。我们考虑$(a-1)(b-1)/2 $,这是在研究$ pq $ - th cyclotomic多项式的研究中,其中$ p,q $是不同的素数。我们证明$(A-1)(B-1)/2 $的两种可能表示为$ a $ a $和$ b $的非负线线性组合。令人惊讶的是,对于每对$(a,b)$,两个表示中只有一个,并且该表示也是唯一的。然后,我们研究$(f_n-1)(f_ {n+1} -1)/2 $和$(f_n-1)(f_n-1)(f_ {n+2} -1)/2 $的表示形式,其中$ f_i $是$ i^{th} $ i^{th} $ fibonacci编号,并观察几个不错的模式。
Let $a, b\in \mathbb{N}$ be relatively prime. We consider $(a-1)(b-1)/2$, which arises in the study of the $pq$-th cyclotomic polynomial, where $p,q$ are distinct primes. We prove two possible representations of $(a-1)(b-1)/2$ as nonnegative, integral linear combinations of $a$ and $b$. Surprisingly, for each pair $(a,b)$, only one of the two representations exists and the representation is also unique. We then investigate the representations of $(F_n-1)(F_{n+1}-1)/2$ and $(F_n-1)(F_{n+2}-1)/2$, where $F_i$ is the $i^{th}$ Fibonacci number, and observe several nice patterns.