论文标题

非主要扭曲的groupoid $ c^*$ - 代数的cartan子代理

Cartan subalgebras for non-principal twisted groupoid $C^*$-algebras

论文作者

Duwenig, Anna, Gillaspy, Elizabeth, Norton, Rachael, Reznikoff, Sarah, Wright, Sarah

论文摘要

雷诺(Renault)在2008年证明,如果$ g $是拓扑主体群体,那么$ c_0(g^{(0)})$是$ c^*_ r(g,σ)$的cartan subalgebra,对于$ g $而言,$ c $σ$。但是,有许多群体不是拓扑主体的,但它们(扭曲的)$ c^*$ - 代数允许cartan subgerbras。本文通过识别$ g $上的2循环$ c $的条件和$ c^*_ r(s,c)$是$ c^*_ r(g,c)$的cartan cartan,对这类cartan subselgebras进行了动态描述。当$ g $是一个离散的组时,我们还描述了与这些cartan对相关的weyl groupoid和twist,在轻度的其他假设下。

Renault proved in 2008 that if $G$ is a topologically principal groupoid, then $C_0(G^{(0)})$ is a Cartan subalgebra in $C^*_r(G, Σ)$ for any twist $Σ$ over $G$. However, there are many groupoids which are not topologically principal, yet their (twisted) $C^*$-algebras admit Cartan subalgebras. This paper gives a dynamical description of a class of such Cartan subalgebras, by identifying conditions on a 2-cocycle $c$ on $G$ and a subgroupoid $S \subseteq G$ under which $C^*_r(S, c)$ is Cartan in $C^*_r(G, c)$. When $G$ is a discrete group, we also describe the Weyl groupoid and twist associated to these Cartan pairs, under mild additional hypotheses.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源