论文标题

贝叶斯设计,以最大程度地减少双变量空间响应的预测不确定性,并应用于空气质量监测

Bayesian design for minimising prediction uncertainty in bivariate spatial responses with applications to air quality monitoring

论文作者

Senarathne, S. G. Jagath, Müller, Werner G., McGree, James M.

论文摘要

基于模型的地理设计涉及选择位置以收集数据,以最大程度地减少所有可能位置的预期损耗函数。指定损失函数以反映数据收集的目的,对于地统计研究,可以最大程度地减少未观察到的位置的预测不确定性。在本文中,我们提出了一种通过考虑模型预测和模型参数的熵来设计的新方法来设计此类研究。该方法还包括对广义线性空间模型的多元扩展,因此可用于设计多个响应的实验。不幸的是,评估我们提出的损失函数的计算昂贵,因此我们提供了近似值,以便可以采用我们的方法来设计现实尺寸的地统计研究。这是通过模拟研究以及在澳大利亚昆士兰州设计的空气质量监测计划来证明的。结果表明,我们的设计在单独实现每个实验目标方面仍然高效,在两个目标之间提供了理想的妥协。因此,我们提倡我们的方法可以在基于模型的地统计设计中更普遍地采用。

Model-based geostatistical design involves the selection of locations to collect data to minimise an expected loss function over a set of all possible locations. The loss function is specified to reflect the aim of data collection, which, for geostatistical studies, could be to minimise the prediction uncertainty at unobserved locations. In this paper, we propose a new approach to design such studies via a loss function derived through considering the entropy about the model predictions and the parameters of the model. The approach also includes a multivariate extension to generalised linear spatial models, and thus can be used to design experiments with more than one response. Unfortunately, evaluating our proposed loss function is computationally expensive so we provide an approximation such that our approach can be adopted to design realistically sized geostatistical studies. This is demonstrated through a simulated study and through designing an air quality monitoring program in Queensland, Australia. The results show that our designs remain highly efficient in achieving each experimental objective individually, providing an ideal compromise between the two objectives. Accordingly, we advocate that our approach could be adopted more generally in model-based geostatistical design.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源