论文标题
通过长期视频和神经记录中的行为挖掘来调查自然主义的手动运动
Investigating naturalistic hand movements by behavior mining in long-term video and neural recordings
论文作者
论文摘要
大脑记录和人工智能方面的最新技术进步正在推动神经科学的新范式超出传统受控实验。自然主义神经科学研究的神经过程并没有专注于提示,重复的试验,而是在无约束的环境中进行的自发行为的神经过程。但是,分析缺乏先验实验设计的这种非结构化数据仍然是一个重大挑战,尤其是当数据是多模式和长期时。在这里,我们描述了一种自动化方法,用于分析同时记录长期自然主义电视学(ECOG)和自然主义行为视频数据的方法。我们采用行为优先的方法来分析长期记录。使用计算机视觉,离散的潜在变量建模以及行为视频数据上的字符串模式匹配的组合,我们发现并注释了自发的人类上LIMB运动事件。我们显示了我们的方法适用于每个受试者在7--9天内收集的12个受试者的数据的结果。我们的管道在行为视频中发现并注释了40,000多个自然主义人类上行运动事件的实例。对同时记录的大脑数据的分析揭示了运动的神经特征,从传统受控实验中证实了先前的发现。我们还针对运动启动检测任务的解码器制作了解码器,以证明管道的功效,作为用于脑部计算机接口应用程序的训练数据的来源。我们的工作解决了研究自然主义人类行为的独特数据分析挑战,并贡献了可能推广到ECOG以外的其他神经记录方式的方法。我们公开发布了我们的策划数据集,提供了一种资源来研究自然主义的神经和行为变异性,以先前不可用的规模。
Recent technological advances in brain recording and artificial intelligence are propelling a new paradigm in neuroscience beyond the traditional controlled experiment. Rather than focusing on cued, repeated trials, naturalistic neuroscience studies neural processes underlying spontaneous behaviors performed in unconstrained settings. However, analyzing such unstructured data lacking a priori experimental design remains a significant challenge, especially when the data is multi-modal and long-term. Here we describe an automated approach for analyzing simultaneously recorded long-term, naturalistic electrocorticography (ECoG) and naturalistic behavior video data. We take a behavior-first approach to analyzing the long-term recordings. Using a combination of computer vision, discrete latent-variable modeling, and string pattern-matching on the behavioral video data, we find and annotate spontaneous human upper-limb movement events. We show results from our approach applied to data collected for 12 human subjects over 7--9 days for each subject. Our pipeline discovers and annotates over 40,000 instances of naturalistic human upper-limb movement events in the behavioral videos. Analysis of the simultaneously recorded brain data reveals neural signatures of movement that corroborate prior findings from traditional controlled experiments. We also prototype a decoder for a movement initiation detection task to demonstrate the efficacy of our pipeline as a source of training data for brain-computer interfacing applications. Our work addresses the unique data analysis challenges in studying naturalistic human behaviors, and contributes methods that may generalize to other neural recording modalities beyond ECoG. We publicly release our curated dataset, providing a resource to study naturalistic neural and behavioral variability at a scale not previously available.