论文标题

多组织联合eqtl映射的协方差增强方法,并应用于全转录组的关联研究

A covariance-enhanced approach to multi-tissue joint eQTL mapping with application to transcriptome-wide association studies

论文作者

Molstad, Aaron J., Sun, Wei, Hsu, Li

论文摘要

基于遗传预测的基因表达的全转录组关联研究具有鉴定与各种复杂性状相关的新区域的潜力。已经表明,与多种组织类型相对应的表达定量性状基因座(EQTL)可以提高涉及复杂病因的关联研究的能力。在本文中,我们提出了一种新的多元响应线性回归模型和方法,用于同时预测多个组织中的基因表达。与现有的多组织关节eqtl映射的方法不同,我们的方法结合了组织组织的表达相关性,这使我们能够更有效地处理缺失的表达测量值,并使用EQTL基因型的加权求和更准确地预测基因表达。我们通过模拟研究表明,在许多情况下,我们的方法的性能比现有方法更好。我们使用我们的方法来估计GTEX收集的29个组织的EQTL权重,并表明我们的方法显着提高了与竞争者相比的表达预测准确性。使用我们的EQTL权重,我们执行了基于多组织的S-Multixcan范围内转录组协会的研究,并表明我们的方法比现有方法导致了新型区域的发现和总体发现更多的发现。估计的EQTL权重可以在github.com/ajmolstad/mteqtlresults上在线下载。

Transcriptome-wide association studies based on genetically predicted gene expression have the potential to identify novel regions associated with various complex traits. It has been shown that incorporating expression quantitative trait loci (eQTLs) corresponding to multiple tissue types can improve power for association studies involving complex etiology. In this article, we propose a new multivariate response linear regression model and method for predicting gene expression in multiple tissues simultaneously. Unlike existing methods for multi-tissue joint eQTL mapping, our approach incorporates tissue-tissue expression correlation, which allows us to more efficiently handle missing expression measurements and more accurately predict gene expression using a weighted summation of eQTL genotypes. We show through simulation studies that our approach performs better than the existing methods in many scenarios. We use our method to estimate eQTL weights for 29 tissues collected by GTEx, and show that our approach significantly improves expression prediction accuracy compared to competitors. Using our eQTL weights, we perform a multi-tissue-based S-MultiXcan transcriptome-wide association study and show that our method leads to more discoveries in novel regions and more discoveries overall than the existing methods. Estimated eQTL weights are available for download online at github.com/ajmolstad/MTeQTLResults.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源