论文标题
Miyamoto组的代码代数
Miyamoto groups of code algebras
论文作者
论文摘要
代码代数$ a_c $是通过二进制线性代码$ c $定义的非缔合代数。在上一篇论文中,我们对代码代数为$ \ Mathbb {z} _2 $ graded轴向(分解)代数时进行了分类。在本文中,对于分类中的每个代数,我们获得了与分级相关的宫本组。我们还表明,可以从轴向分解代数结构中恢复代码代数结构。
A code algebra $A_C$ is a nonassociative commutative algebra defined via a binary linear code $C$. In a previous paper, we classified when code algebras are $\mathbb{Z}_2$-graded axial (decomposition) algebras generated by small idempotents. In this paper, for each algebra in our classification, we obtain the Miyamoto group associated to the grading. We also show that the code algebra structure can be recovered from the axial decomposition algebra structure.