论文标题

关于WALD测试中的Hauck-Donner效应:检测,临界点和参数空间表征

On the Hauck-Donner Effect in Wald Tests: Detection, Tipping Points, and Parameter Space Characterization

论文作者

Yee, Thomas William

论文摘要

尽管缺点,例如小样本中的不准确性以及在重新聚体中缺乏不变性,但在统计实践中,WALD测试仍然无处不在。本文在另一个但鲜为人知的缺点(hauck-donner效应(HDE))上发展,从而,WALD测试统计量并非单调增加,这是参数估计值和无效值之间距离增加的函数。导致向上偏见的$ p $价值和功率损失,畸变会导致非常有害的后果,例如可变选择。 HDE折磨了许多类型的回归模型,对应于参数空间边界附近的估计。本文提出了几个新的结果,其主要贡献是(i)提出一个非常通用的检测HDE的测试,无论其根本原因如何; (ii)从根本上以Wald和Rao得分的成对比率和1-参数分布的可能性比率测试统计数据来表征HDE; (iii)表明,参数空间可以被分配到5个HDE严重程度度量(微弱,弱,中度,强度,极端)的内部; (iv)证明在2 x 2表中HDE的必要条件是至少2的对数比值比; (v)给出一些有关无HDE假设检验的实用准则。总体而言,现在可以对通过迭代重新加权的最小二乘(例如广义线性模型(GLM)和向量GLM(VGLM)类估计的任何模型进行实用的拟合后测试,后者包括许多流行的回归模型。

The Wald test remains ubiquitous in statistical practice despite shortcomings such as its inaccuracy in small samples and lack of invariance under reparameterization. This paper develops on another but lesser-known shortcoming called the Hauck--Donner effect (HDE) whereby a Wald test statistic is not monotonely increasing as a function of increasing distance between the parameter estimate and the null value. Resulting in an upward biased $p$-value and loss of power, the aberration can lead to very damaging consequences such as in variable selection. The HDE afflicts many types of regression models and corresponds to estimates near the boundary of the parameter space. This article presents several new results, and its main contributions are to (i) propose a very general test for detecting the HDE, regardless of its underlying cause; (ii) fundamentally characterize the HDE by pairwise ratios of Wald and Rao score and likelihood ratio test statistics for 1-parameter distributions; (iii) show that the parameter space may be partitioned into an interior encased by 5 HDE severity measures (faint, weak, moderate, strong, extreme); (iv) prove that a necessary condition for the HDE in a 2 by 2 table is a log odds ratio of at least 2; (v) give some practical guidelines about HDE-free hypothesis testing. Overall, practical post-fit tests can now be conducted potentially to any model estimated by iteratively reweighted least squares, such as the generalized linear model (GLM) and Vector GLM (VGLM) classes, the latter which encompasses many popular regression models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源