论文标题

通过特征值分解的多渠道吕沙尔决定因素条件的有效解决方案

Efficient solution of the multi-channel Lüscher determinant condition through eigenvalue decomposition

论文作者

Woss, Antoni J., Wilson, David J., Dudek, Jozef J.

论文摘要

我们提出了一种有效地找到吕舍尔定量条件解决方案的方法,该方程将两粒子散射幅度与状态的离散频谱相关联,以有限范围的周期性空间量,例如lattice QCD中存在的范围。提出的方法基于耦合通道和部分波浪空间中的特征值分解,事实证明,在考虑无旋转颗粒的简单弹性散射以外的问题时,这些方法具有几种可取且简化的特征,这些特征具有很大的好处。我们用矢量矢量散射的玩具模型说明了该方法,该模型具有高密度的解决方案,并采用了描述$ j^p = 1^ - $和$ 1^+$散射的晶格QCD QCD QCD能级数据。

We present a method for efficiently finding solutions of Lüscher's quantisation condition, the equation which relates two-particle scattering amplitudes to the discrete spectrum of states in a periodic spatial volume of finite extent such as that present in lattice QCD. The approach proposed is based on an eigenvalue decomposition in the space of coupled-channels and partial-waves, which proves to have several desirable and simplifying features that are of great benefit when considering problems beyond simple elastic scattering of spinless particles. We illustrate the method with a toy model of vector-vector scattering featuring a high density of solutions, and with an application to explicit lattice QCD energy level data describing $J^P=1^-$ and $1^+$ scattering in several coupled channels.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源