论文标题

具有固定数字的随机变量的表征

Characterization of random variables with stationary digits

论文作者

Cornean, Horia, Herbst, Ira W., Møller, Jesper, Støttrup, Benjamin, Sørensen, Kasper S.

论文摘要

令$ q \ ge2 $为整数,$ \ {x_n \} _ {n \ geq 1} $带有状态空间$ \ {0,\ ldots,q-1 \} $的随机过程 $ \ sum_ {n = 1}^\ infty x_n q^{ - n} $。我们表明$ \ {x_n \} _ {n \ geq 1} $的平稳性等同于$ f $遵守的函数方程,并使用它来表征$ x $和 $ f $的结构就其Lebesgue分解而言。更确切地说,虽然$ f $的绝对连续组件只能是单位间隔上均匀的分布,但其离散组件只能是某些明确可计算的CDF的可数凸组合,以提供有限支持的概率分布。 我们还表明,$ \ mathrm {d} f $是Rajchman的措施,并且仅当$ f $是$ [0,1] $上的统一CDF。

Let $q\ge2$ be an integer, $\{X_n\}_{n\geq 1}$ a stochastic process with state space $\{0,\ldots,q-1\}$, and $F$ the cumulative distribution function (CDF) of $\sum_{n=1}^\infty X_n q^{-n}$. We show that stationarity of $\{X_n\}_{n\geq 1}$ is equivalent to a functional equation obeyed by $F$ and use this to characterize the characteristic function of $X$ and the structure of $F$ in terms of its Lebesgue decomposition. More precisely, while the absolutely continuous component of $F$ can only be the uniform distribution on the unit interval, its discrete component can only be a countable convex combination of certain explicitly computable CDFs for probability distributions with finite support. We also show that $\mathrm{d} F$ is a Rajchman measure if and only if $F $ is the uniform CDF on $[0,1]$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源