论文标题
有效预测多环芳烃独立化学移位
Efficient prediction of Nucleus Independent Chemical Shifts for polycyclic aromatic hydrocarbons
论文作者
论文摘要
核磁共振(NMR)是表征分子和受限液体结构的最强大的实验技术之一。然而,调查系统的复杂性通常需要互补的计算研究来解释NMR结果。在这项工作中,我们专注于多环芳烃(PAHS),这是一类重要的有机分子,通常用作更复杂系统(例如多孔混乱的碳)的光谱特性的简单类似物。我们使用密度功能理论(DFT)来计算34个PAH的13C化学移位和核独立化学移位(NIC)。结果表明,这两个量的分子大小依赖性清晰,以及13c NMR的收敛性朝向石墨烯观察到的值。然后,我们提出了两个计算廉价模型,以预测简单PAH的NIC。我们表明,尽管一个简单的偶极模型无法产生准确的值,但可以成功地应用于该系列分子中NIC的攻击性紧密结合方法,包括一些含有5和7元环的非平面物。该模型比DFT计算快一到两个阶数,这是非常有希望的,可以进一步完善以研究更复杂的系统。
Nuclear Magnetic Resonance (NMR) is one of the most powerful experimental techniques to characterize the structure of molecules and confined liquids. Nevertheless, the complexity of the systems under investigation usually requires complementary computational studies to interpret the NMR results. In this work we focus on polycyclic aromatic hydrocarbons (PAHs), an important class of organic molecules which have been commonly used as simple analogues for the spectroscopic properties of more complex systems, such as porous disordered carbons. We use Density Functional Theory (DFT) to calculate 13C chemical shifts and Nucleus Independent Chemical Shifts (NICS) for 34 PAHs. The results show a clear molecular size dependence of the two quantities, as well as the convergence of the 13C NMR shifts towards the values observed for graphene. We then present two computationally cheap models for the prediction of NICS in simple PAHs. We show that while a simple dipolar model fails to produce accurate values, a perturbative tight-binding approach can be successfully applied for the prediction of NICS in this series of molecules, including some non-planar ones containing 5- and 7-membered rings. This model, one to two orders of magnitudes faster than DFT calculations, is very promising and can be further refined in order to study more complex systems.