论文标题
组成运算符对非线性控制系统的反馈稳定
Feedback Stabilization of Nonlinear Control Systems by Composition Operators
论文作者
论文摘要
控制系统的反馈渐近稳定是控制理论和应用的重要主题。从广义上讲,如果系统$ \ dot {x} = f(x,u)$是局部渐近稳定的,则存在一个反馈控制$ u(x)$(x)$,以确保从足够接近平衡状态开始的任何轨迹的均衡。在本文中,我们开发了一种合理的自然和一般组成操作员的稳定性方法。首先,我们将经典的Hautus引理的扩展为构图操作员的广义上下文,并表明在这个广义框架中,布罗基特的定理对于局部渐近稳定性仍然是必要的。此外,我们采用了隐性函数定理的强大版本 - 就像Jittorntrum和Kumagai所给出的那样,在此扩展的上下文中,覆盖稳定性而没有可区分性要求。采用获得的特征,我们在常规意义上和广义组成操作员的意义上建立了稳定性之间的关系。该连接使我们可以证明控制系统的稳定性等效于关联系统的稳定性。也就是说,我们将稳定性问题减少到稳定性问题。
Feedback asymptotic stabilization of control systems is an important topic of control theory and applications. Broadly speaking, if the system $\dot{x} = f(x,u)$ is locally asymptotically stabilizable, then there exists a feedback control $u(x)$ ensuring the convergence to an equilibrium for any trajectory starting from a point sufficiently close to the equilibrium state. In this paper, we develop a reasonably natural and general composition operator approach to stabilizability. To begin with, we provide an extension of the classical Hautus lemma to the generalized context of composition operators and show that Brockett's theorem is still necessary for local asymptotic stabilizability in this generalized framework. Further, we employ a powerful version of the implicit function theorem--as given by Jittorntrum and Kumagai--to cover stabilization without differentiability requirements in this expanded context. Employing the obtained characterizations, we establish relationships between stabilizability in the conventional sense and in the generalized composition operator sense. This connection allows us to show that the stabilizability of a control system is equivalent to the stability of an associated system. That is, we reduce the question of stabilizability to that of stability.