论文标题
通过对抗训练去除MRI频带
MRI Banding Removal via Adversarial Training
论文作者
论文摘要
使用深度学习技术从子采样的笛卡尔数据重建的MRI图像通常显示出特征性的频带(有时被描述为条纹),这在重建图像的低信噪区中尤其强。在这项工作中,我们提出了对对抗性损失的使用,该损失会惩罚带状结构而无需任何人类注释。我们的技术大大降低了带的外观,而无需在重建时间进行任何其他计算或后处理。我们报告了一组专家评估者(董事会认证的放射科医生)与强大基线进行盲目比较的结果,在这种情况下,我们的方法在拆除范围内的排名较高,而没有统计学上显着的细节损失。
MRI images reconstructed from sub-sampled Cartesian data using deep learning techniques often show a characteristic banding (sometimes described as streaking), which is particularly strong in low signal-to-noise regions of the reconstructed image. In this work, we propose the use of an adversarial loss that penalizes banding structures without requiring any human annotation. Our technique greatly reduces the appearance of banding, without requiring any additional computation or post-processing at reconstruction time. We report the results of a blind comparison against a strong baseline by a group of expert evaluators (board-certified radiologists), where our approach is ranked superior at banding removal with no statistically significant loss of detail.