论文标题
随着时变的电力背景的狄拉克场的绝热正则化
Adiabatic regularization for Dirac fields in time-varying electric backgrounds
论文作者
论文摘要
绝热正则化方法最初是由Parker提出的,并在扩展的宇宙中恢复标量场的能量量张量。它可以扩展以在随着时间的变化电源背景下量化量化标量场引起的电流。如果将矢量电势视为绝热顺序的变量,则可以以与重力一致的方式进行。假设这是我们进一步扩展了在四个时空维度中处理狄拉克字段的方法。在存在规定的时间依赖的电场的情况下,这需要自绝热膨胀的自一致的ANSATZ,这与标量场所使用的常规扩展不同。我们的建议在无质量的限制下与共形异常保持一致。我们还提供了证据表明,我们提出的对费米子模式的绝热膨胀与Schwinger-Dewitt的绝热膨胀相似。我们使用数值和分析工具(由Sauter-type电脉冲引起的,对电流进行了重新归一化的表达,并使用数值和分析工具进行分析。我们还分析了电流强度较大的电流的缩放特性。
The adiabatic regularization method was originally proposed by Parker and Fulling to renormalize the energy-momentum tensor of scalar fields in expanding universes. It can be extended to renormalize the electric current induced by quantized scalar fields in a time-varying electric background. This can be done in a way consistent with gravity if the vector potential is considered as a variable of adiabatic order one. Assuming this, we further extend the method to deal with Dirac fields in four spacetime dimensions. This requires a self-consistent ansatz for the adiabatic expansion, in presence of a prescribed time-dependent electric field, which is different from the conventional expansion used for scalar fields. Our proposal is consistent, in the massless limit, with the conformal anomaly. We also provide evidence that our proposed adiabatic expansion for the fermionic modes parallels the Schwinger-DeWitt adiabatic expansion of the two-point function. We give the renormalized expression of the electric current and analyze, using numerical and analytical tools, the pair production induced by a Sauter-type electric pulse. We also analyze the scaling properties of the current for a large field strength.