论文标题
有限的W-Superalgebras通过超级扬吉人
Finite W-superalgebras via super Yangians
论文作者
论文摘要
让$ e $成为一般线性谎言中的nilpotent元素,superalgebra $ \ mathfrak {gl} _ {m | n} $,让$ \ mathcal {w} _e $为相关的有限有限$ w $ w $ -su-superalgebra。令$ y_ {m | n} $为与Lie Superalgebra $ \ Mathfrak {gl} _ {m | n} $关联的超级Yangian。 $ y_ {m | n} $的sibalgebra被称为移动的超级扬态,并用$ y_ {m | n}(σ)$表示。此外,建立了$ \ Mathcal {W} _e $与$ y_ {m | n}(σ)$的商之间的明显同构。
Let $e$ be an arbitrary even nilpotent element in the general linear Lie superalgebra $\mathfrak{gl}_{M|N}$ and let $\mathcal{W}_e$ be the associated finite $W$-superalgebra. Let $Y_{m|n}$ be the super Yangian associated to the Lie superalgebra $\mathfrak{gl}_{m|n}$. A subalgebra of $Y_{m|n}$, called the shifted super Yangian and denoted by $Y_{m|n}(σ)$, is defined and studied. Moreover, an explicit isomorphism between $\mathcal{W}_e$ and a quotient of $Y_{m|n}(σ)$ is established.