论文标题
cartan形式主义中F(r)重力与扭转的量规对称性
The gauge symmetries of f(R) gravity with torsion in the Cartan formalism
论文作者
论文摘要
$ n $尺寸($ n \ geq 3 $)中的一阶一般相对论具有内部规格对称性,这是三维本地翻译的高维概括。我们报告了这种对称性的扩展,以$ n $二维的f(r)重力与cartan形式主义中的扭转。新的对称性是由Noether第二个定理的Converse直接应用于扭转的F(R)重力的作用原理。我们表明,无穷小的差异性可以写成新的内部量表对称性,局部洛伦兹变换的线性组合以及与F(r)作用的变异衍生物成比例的术语。这意味着可以使用新的内部对称性以及局部洛伦兹变换来描述F(r)重力与扭转的完全量规对称性,因此在这种情况下,差异形态变为衍生的对称性。
First-order general relativity in $n$ dimensions ($n \geq 3$) has an internal gauge symmetry that is the higher-dimensional generalization of three-dimensional local translations. We report the extension of this symmetry for $n$-dimensional f(R) gravity with torsion in the Cartan formalism. The new symmetry arises from the direct application of the converse of Noether's second theorem to the action principle of f(R) gravity with torsion. We show that infinitesimal diffeomorphisms can be written as a linear combination of the new internal gauge symmetry, local Lorentz transformations, and terms proportional to the variational derivatives of the f(R) action. It means that the new internal symmetry together with local Lorentz transformations can be used to describe the full gauge symmetry of f(R) gravity with torsion, and thus diffeomorphisms become a derived symmetry in this setting.