论文标题
关于分级Quivers二元网的分类
On the Classification of Duality Webs for Graded Quivers
论文作者
论文摘要
我们研究了与CY $(M+2)$ - 折叠及其订单$(M+1)$二元性相关的$ M $ $ M $ QUIVIR THEROIY。我们研究了单层如何产生突变不变性,而这又可以作为表征与给定几何形状相关的双重理论空间的二磷剂方程式进行表述。我们总体上讨论了这些想法,并在Orbifold理论的情况下进行了说明。有趣的是,我们观察到,即使在这种简单的上下文中,相应的Diophantine方程也可能会允许$ M \ GEQ 2 $的无限种子,这转化为无限数量的脱节二元网络。最后,我们评论二元级联的概括超过$ m = 1 $。
We study the $m$-graded quiver theories associated to CY $(m+2)$-folds and their order $(m+1)$ dualities. We investigate how monodromies give rise to mutation invariants, which in turn can be formulated as Diophantine equations characterizing the space of dual theories associated to a given geometry. We discuss these ideas in general and illustrate them in the case of orbifold theories. Interestingly, we observe that even in this simple context the corresponding Diophantine equations may admit an infinite number of seeds for $m\geq 2$, which translates into an infinite number of disconnected duality webs. Finally, we comment on the possible generalization of duality cascades beyond $m=1$.