论文标题
通过$ l_p $ - 空格采样类型运算符的近似
Approximation by sampling-type operators in $L_p$-spaces
论文作者
论文摘要
研究了来自各向异性BESOV空间的函数$ f $的采样型型准投影算子$ q_j(f,φ,\widetildeφ)$。在假设$φ$具有足够的衰减,满足nment-fix条件和兼容性条件的假设下,获得了$ L_P $ -NORM中的错误估计值$ \widetildeφ$,并获得了大量的perpections $ \widetildeφ$中的错误估计值。估计是根据平滑度和最佳近似值的模量给出的。
Approximation properties of the sampling-type quasi-projection operators $Q_j(f,φ, \widetildeφ)$ for functions $f$ from anisotropic Besov spaces are studied. Error estimates in $L_p$-norm are obtained for a large class of tempered distributions $\widetildeφ$ and a large class of functions $φ$ under the assumptions that $φ$ has enough decay, satisfies the Strang-Fix conditions and a compatibility condition with $\widetildeφ$. The estimates are given in terms of moduli of smoothness and best approximations.