论文标题
一维移动窗口原子框架,以建模长期冲击波传播
One-dimensional moving window atomistic framework to model long-time shock wave propagation
论文作者
论文摘要
我们使用分子动力学(MD)开发了长期移动的窗口框架,以通过一维原子链建模冲击波传播。该域被分为一个纯原子的“窗口”区域,该区域包含两端边界或“连续”区域的冲击波。窗口原子的动力学由经典的MD运动方程式控制,而连续性冲击条件则应用于连续原子。通过使用局部应用于连续区域的Langevin恒温器采用阻尼带方法,可以消除伪造波反射。通过向窗口和边界区域添加/去除原子来实现移动窗口效果,因此,冲击波前部无限期地集中在窗户区域的中心。结果,所需的域尺寸很小,使我们可以长时间建模冲击波传播。我们使用Lennard-Jones,修饰的Morse或嵌入原子模型(EAM)的原子间潜能通过一维铜原子链模拟冲击。我们首先进行验证研究,以确保分别适当地实施恒温器,潜在功能和阻尼带方法。接下来,我们跟踪传播冲击,并将实际的冲击速度和平均粒子速度与它们相应的分析输入值进行比较。从这些比较中,我们优化了给定的“晶格”方向的线性冲击Hugoniot关系,并将这些结果与文献中的结果进行了比较。当纳入线性冲击方程中时,这些新的Hugoniot参数被证明会产生固定的冲击波前部。最后,我们对不稳定的结构性冲击进行一维移动窗口模拟,直至几纳秒,并表征了冲击锋宽度的增加。
We develop a long-time moving window framework using Molecular Dynamics (MD) to model shock wave propagation through a one-dimensional chain of atoms. The domain is divided into a purely atomistic "window" region containing the shock wave flanked by boundary or "continuum" regions on either end. The dynamics of the window atoms are governed by classic MD equations of motion while continuum shock conditions are applied to the continuum atoms. Spurious wave reflections are removed by employing a damping band method using the Langevin thermostat applied locally to the continuum region. The moving window effect is achieved by adding/removing atoms to/from the window and boundary regions, and thus the shock wave front is focused at the center of the window region indefinitely. As a result, the required domain size is very small allowing us to model shock wave propagation for a long time. We simulate the shock through a one-dimensional chain of copper atoms using either the Lennard-Jones, modified Morse, or Embedded Atom Model (EAM) interatomic potential. We first perform verification studies to ensure proper implementation of the thermostat, potential functions, and damping band method, respectively. Next, we track the propagating shock and compare the actual shock velocity and average particle velocity to their corresponding analytical input values. From these comparisons, we optimize the linear shock Hugoniot relation for the given "lattice" orientation and compare these results to those in literature. When incorporated into the linear shock equation, these new Hugoniot parameters are shown to produce a stationary shock wave front. Finally, we perform one-dimensional moving window simulations of an unsteady, structured shock up to a few nanoseconds and characterize the increase in the shock front's width.