论文标题

编码牛顿 - 欧拉算法中的物理约束

Encoding Physical Constraints in Differentiable Newton-Euler Algorithm

论文作者

Sutanto, Giovanni, Wang, Austin S., Lin, Yixin, Mukadam, Mustafa, Sukhatme, Gaurav S., Rai, Akshara, Meier, Franziska

论文摘要

递归牛顿 - 欧拉算法(RNEA)是计算机器人动力学的流行技术。 RNEA可以作为可区分的计算图构架,从而使机器人的动力学参数可以通过现代自动差异工具箱从数据中学习。但是,以这种方式学习的动力学参数在物理上是不可思议的。在这项工作中,我们通过将结构添加到学习的参数中来纳入学习中的物理约束。这导致一个框架可以通过梯度下降来学习物理上合理的动态,从而提高了训练速度以及对学习动力学模型的概括。我们在模拟和真实机器人上的7度自由机器人组上的实时反向动力学控制任务评估了我们的方法。我们的实验研究了一系列结构范围,添加到可区分RNEA算法的参数中,并比较它们的性能和概括。

The recursive Newton-Euler Algorithm (RNEA) is a popular technique for computing the dynamics of robots. RNEA can be framed as a differentiable computational graph, enabling the dynamics parameters of the robot to be learned from data via modern auto-differentiation toolboxes. However, the dynamics parameters learned in this manner can be physically implausible. In this work, we incorporate physical constraints in the learning by adding structure to the learned parameters. This results in a framework that can learn physically plausible dynamics via gradient descent, improving the training speed as well as generalization of the learned dynamics models. We evaluate our method on real-time inverse dynamics control tasks on a 7 degree of freedom robot arm, both in simulation and on the real robot. Our experiments study a spectrum of structure added to the parameters of the differentiable RNEA algorithm, and compare their performance and generalization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源