论文标题
不精确的相对平滑度和强大的凸性,以通过不精确模型优化和变异不等式
Inexact Relative Smoothness and Strong Convexity for Optimization and Variational Inequalities by Inexact Model
论文作者
论文摘要
在本文中,我们提出了一个一般算法框架,用于在广义上进行优化的一阶方法,包括最小化问题,鞍点问题和变异不平等。该框架允许获取许多已知方法作为一种特殊情况,包括加速梯度方法,复合优化方法,级别集合方法,Bregman近端方法的列表。框架的想法基于构建主要问题组件的不精确模型,即优化的目标函数或各种不等式的操作员。除了重现已知结果外,我们的框架还允许构建新方法,我们通过构建通用条件梯度方法和一种具有复合结构的变异不平等的通用方法来说明这一点。此方法可用于平稳且非平滑的问题,具有最佳的复杂性,而没有对问题的平稳性的先验知识。作为我们一般框架的一个特殊情况,我们引入了对操作员的相对平滑度,并提出了与此类操作员有关变异不平等(VIS)的算法。我们还概括了我们的框架,以相对强烈地凸出目标和强烈的单调变化不平等。 本文是[Arxiv:1902.00990]的扩展和更新版本。特别是,我们增加了相对强凸度的扩展,以优化和变异不平等。
In this paper, we propose a general algorithmic framework for first-order methods in optimization in a broad sense, including minimization problems, saddle-point problems, and variational inequalities. This framework allows obtaining many known methods as a special case, the list including accelerated gradient method, composite optimization methods, level-set methods, Bregman proximal methods. The idea of the framework is based on constructing an inexact model of the main problem component, i.e. objective function in optimization or operator in variational inequalities. Besides reproducing known results, our framework allows constructing new methods, which we illustrate by constructing a universal conditional gradient method and a universal method for variational inequalities with a composite structure. This method works for smooth and non-smooth problems with optimal complexity without a priori knowledge of the problem's smoothness. As a particular case of our general framework, we introduce relative smoothness for operators and propose an algorithm for variational inequalities (VIs) with such operators. We also generalize our framework for relatively strongly convex objectives and strongly monotone variational inequalities. This paper is an extended and updated version of [arXiv:1902.00990]. In particular, we add an extension of relative strong convexity for optimization and variational inequalities.