论文标题
投影kleinian orbisurfaces的特征类和稳定条件
Characteristic classes and stability conditions for projective Kleinian orbisurfaces
论文作者
论文摘要
我们在平滑的准标准脱口机蒙福河表面的衍生类别上构建了bridgeland稳定条件,其粗模量空间具有奇异性。这统一了光滑的表面和布里奇兰在克莱恩奇点的作品的结构。该构造取决于Bogomolov-Gieseker的Orbifold版本,用于堆栈上的斜坡可半固定滑轮,并利用Toën-Hirzebruch-Riemann-Roch定理。
We construct Bridgeland stability conditions on the derived category of smooth quasi-projective Deligne-Mumford surfaces whose coarse moduli spaces have ADE singularities. This unifies the construction for smooth surfaces and Bridgeland's work on Kleinian singularities. The construction hinges on an orbifold version of the Bogomolov-Gieseker inequality for slope semistable sheaves on the stack, and makes use of the Toën-Hirzebruch-Riemann-Roch theorem.