论文标题

电离辐射对超导值一致性的影响

Impact of ionizing radiation on superconducting qubit coherence

论文作者

Vepsäläinen, Antti, Karamlou, Amir H., Orrell, John L., Dogra, Akshunna S., Loer, Ben, Vasconcelos, Francisca, Kim, David K., Melville, Alexander J., Niedzielski, Bethany M., Yoder, Jonilyn L., Gustavsson, Simon, Formaggio, Joseph A., VanDevender, Brent A., Oliver, William D.

论文摘要

任何Qubit技术的实际生存能力都在漫长的连贯时期和高保真操作上,超导量子的方式是一个主要的例子。然而,超导量子的连贯性受到破碎的库珀对的影响,库珀对(称为清单,密度在经验上的密度都比Bardeen-Cooper-schrieffer(BCS)超导电性理论的热平衡预测的值大。先前的工作表明,红外光子显着提高了准粒子密度,但是即使在最佳的孤立系统中,它仍然仍然高于预期,这表明存在另一种一代机制。在这封信中,我们提供了证据表明,环境放射性材料和宇宙射线的电离辐射有助于这种观察到的差异,从而导致准粒子密度升高,最终将限制在此处测量的类型的超导量子,以在毫秒方面进行相干时间。我们进一步证明,引入辐射屏蔽会减少电离辐射的通量,并与增加的相干时间正相关。尽管对于当今的量他的量表来说,减少或以其他方式减轻电离辐射的影响很小,对于实现耐断层的超导量子计算机至关重要。

The practical viability of any qubit technology stands on long coherence times and high-fidelity operations, with the superconducting qubit modality being a leading example. However, superconducting qubit coherence is impacted by broken Cooper pairs, referred to as quasiparticles, with a density that is empirically observed to be orders of magnitude greater than the value predicted for thermal equilibrium by the Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity. Previous work has shown that infrared photons significantly increase the quasiparticle density, yet even in the best isolated systems, it still remains higher than expected, suggesting that another generation mechanism exists. In this Letter, we provide evidence that ionizing radiation from environmental radioactive materials and cosmic rays contributes to this observed difference, leading to an elevated quasiparticle density that would ultimately limit superconducting qubits of the type measured here to coherence times in the millisecond regime. We further demonstrate that introducing radiation shielding reduces the flux of ionizing radiation and positively correlates with increased coherence time. Albeit a small effect for today's qubits, reducing or otherwise mitigating the impact of ionizing radiation will be critical for realizing fault-tolerant superconducting quantum computers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源