论文标题

有限周期盒中大型$ n $ gross-neveu型号的相图

Phase diagram of the large $N$ Gross-Neveu model in a finite periodic box

论文作者

Narayanan, Rajamani

论文摘要

我们以大量无质量费米风味的限制分析了总螺旋模型。我们在固定的热与空间纵横比,$ \fracβ{\ ell} $中以两维周期盒中的两维周期盒中研究相图,具有独立的化学势。我们假设双线性冷凝物在存在时,在空间方向上具有特定的动量。在有限的$ \ ell \ ell \timesβ$ torus上还可以看到相图的主要特征,即$ \ ell \ to \ infty $限制。具有不均匀(非零动量)冷凝物和无冷凝水相的相。我们观察到,不均匀的相包含以特定空间动量为特征的几个子。与二维模型不同,我们找不到三维模型中具有不均匀冷凝物的相位的证据。

We analyze the Gross-Neveu model in the limit of large number of flavors of massless fermions. We study the phase diagram in a two and three dimensional periodic box at a fixed thermal to spatial aspect ratio, $\fracβ{\ell}$, with a flavor independent chemical potential. We assume the bilinear condensate, when one exists, has a specific momentum in the spatial direction(s). The main known features of the phase diagram in the $\ell\to\infty$ limit of the two dimensional model are also seen on a finite $\ell\timesβ$ torus -- a phase with a homogeneous (zero momentum) condensate; a phase with an inhomogeneous (non-zero momentum) condensate and a phase with no condensate. We observe that the inhomogeneous phase contains several sub-phases characterized by a specific spatial momentum. Unlike the two dimensional model, we do not find evidence for a phase with a inhomogeneous condensate in the three dimensional model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源